Optimal Surface Amino-Functionalization Following Thermo-Alkaline Treatment of Nanostructured Silica Adsorbents for Enhanced CO2 Adsorption
نویسندگان
چکیده
Special preparation of Santa Barbara Amorphous (SBA)-15, mesoporous silica with highly hexagonal ordered, these materials have been carried out for creating adsorbents exhibiting an enhanced and partially selective adsorption toward CO₂. This creation starts from an adequate conditioning of the silica surface, via a thermo-alkaline treatment to increase the population of silanol species on it. CO₂ adsorption is only reasonably achieved when the SiO₂ surface becomes aminated after put in contact with a solution of an amino alkoxide compound in the right solvent. Unfunctionalized and amine-functionalized substrates were characterized through X-ray diffraction, N₂ sorption, Raman spectroscopy, electron microscopy, 29Si solid-state Nuclear Magnetic Resonance (NMR), and NH₃ thermal programmed desorption. These analyses proved that the thermo-alkaline procedure desilicates the substrate and eliminates the micropores (without affecting the SBA-15 capillaries), present in the original solid. NMR analysis confirms that the hydroxylated solid anchors more amino functionalizing molecules than the unhydroxylated material. The SBA-15 sample subjected to hydroxylation and amino-functionalization displays a high enthalpy of interaction, a reason why this solid is suitable for a strong deposition of CO₂ but with the possibility of observing a low-pressure hysteresis phenomenon. Contrastingly, CH₄ adsorption on amino-functionalized, hydroxylated SBA-15 substrates becomes almost five times lower than the CO₂ one, thus giving proof of their selectivity toward CO₂. Although the amount of retained CO₂ is not yet similar to or higher than those determined in other investigations, the methodology herein described is still susceptible to optimization.
منابع مشابه
Investigation of Carbon Dioxide Adsorption on Amino-Functionalized Mesoporous Silica
Carbon dioxide (CO2) adsorption on unfunctionalized and amino-functionalized SBA-3 materials are investigated and compared in this study. The synthesized materials are characterized by various techniques such as X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET) method, Fourier transform infrared (FT-IR) and Scanning electron microscopy (SEM).The isotherms of these materials have been measure...
متن کاملPromoting Effect of Inorganic Alkali on Carbon Dioxide Adsorption in Amine-Modified MCM-41
Three kinds of inorganic alkali are introduced into tetraethylenepentamine (TEPA)and polyethyleneimine (PEI)-modified MCM-41 as the CO2 adsorbents. FT-IR and TGA are used to characterize the surface groups and the thermal stability of adsorbents. Chemical titration method is used to measure the alkali amounts of adsorbents. Thermo-gravimetric analysis with 10% CO2/90% N2 as the simulated flue g...
متن کاملCarbon Dioxide Capture by Modified UVM-7 Adsorbent
In this study, bimodal meso-porous silica (UVM-7) synthesized and fabricated amino silane modified supports were characterized by powder X-ray diffraction (XRD), N2 adsorption/desorption, transmission electron microscope (TEM), elemental analysis and titration. Capacity of CO2 capture on modified bimodal pore structure silica at 70°C was calculated using breakthrough curves; and it was found th...
متن کاملEnhancement of CO2/CH4 Adsorptive Selectivity by Functionalized Nano Zeolite
In this work, we have modified a synthesized Y-type zeolite (Si/Al = 2.5), with three different amines to investigate of the influence of adsorbent’s surface modification on CO2 selectivity over CH4. The pristine and amine-functionalized NaY zeolites were characterized by X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), and N2 adsorption. The resu...
متن کاملInsight into the adsorption of tetracycline onto amino and amino-Fe3+ gunctionalized mesoporous silica: Effect of functionalized groups.
In order to study the influences of functionalized groups onto the adsorption of tetracycline, we prepared a series of amino and amino-Fe3+ complex mesoporous silica adsorbents with diverse content of amino and Fe3+ groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrom...
متن کامل